|  | aration Graph based methods | ls Unsupervised learning | Conclusions |
|--|-----------------------------|--------------------------|-------------|
|  |                             |                          |             |

# A Taxonomy of Semi-Supervised Learning Algorithms

### Olivier Chapelle

#### Max Planck Institute for Biological Cybernetics

#### December 2005





| Introduction<br>000000 | Generative models | Low density separation | Graph based methods | Unsupervised learning<br>00 | Conclusions<br>000 |
|------------------------|-------------------|------------------------|---------------------|-----------------------------|--------------------|
| Outline                | 9                 |                        |                     |                             |                    |



- 2 Generative models
- 3 Low density separation
- Graph based methods
- 5 Unsupervised learning

## 6 Conclusions

| Introduction | Generative models | Low density separation | Graph based methods<br>000000 | Unsupervised learning<br>00 | Conclusions<br>000 |
|--------------|-------------------|------------------------|-------------------------------|-----------------------------|--------------------|
| Outline      | e                 |                        |                               |                             |                    |

1 Introduction

- 2 Generative models
- 3 Low density separation
- Graph based methods
- 5 Unsupervised learning

#### 6 Conclusions



We consider here the problem of binary classification.

## Definition (Supervised learning)

Given a training set  $\{(\mathbf{x}_i, y_i)\}$  estimate a decision function (or more generally a probability  $P(y|\mathbf{x})$ ).

### Definition (Semi-supervised learning)

Same goal as supervised learning, but in addition a set of unlabeled points  $\{\mathbf{x}'_i\}$  is available.

Typically, much more unlabeled data than labeled data.

Note: differs from the related notion of transduction.

| Introduction<br>00000 | Generative models | Low density separation | Graph based methods<br>000000 | Unsupervised learning<br>00 | Conclusions<br>000 |
|-----------------------|-------------------|------------------------|-------------------------------|-----------------------------|--------------------|
| Are un                | labeled da        | ta useful ?            |                               |                             |                    |

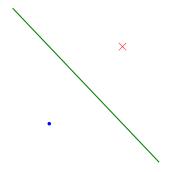
| Introduction<br>00000 | Generative models | Low density separation | Graph based methods<br>000000 | Unsupervised learning<br>00 | Conclusions<br>000 |
|-----------------------|-------------------|------------------------|-------------------------------|-----------------------------|--------------------|
| Are un                | labeled da        | ta useful ?            |                               |                             |                    |

.

Х

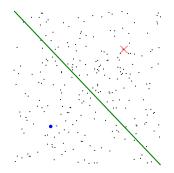
| Aro un       | Jaholod da        | ta ucaful ?            |                     |                       |             |
|--------------|-------------------|------------------------|---------------------|-----------------------|-------------|
| 00000        | 00000             | 000                    | 000000              |                       | 000         |
| Introduction | Generative models | Low density separation | Graph based methods | Unsupervised learning | Conclusions |





| A KO UN      | labolad da        | to usoful 2            |                     |                       |             |
|--------------|-------------------|------------------------|---------------------|-----------------------|-------------|
| 00000        | 00000             | 000                    | 000000              | 00                    | 000         |
| Introduction | Generative models | Low density separation | Graph based methods | Unsupervised learning | Conclusions |

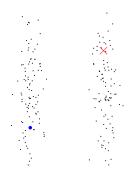
## Are unlabeled data useful ?



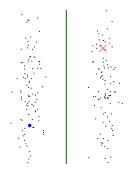
No

| A            | labolad da        | to upoful 2            |                     |                       |             |
|--------------|-------------------|------------------------|---------------------|-----------------------|-------------|
| 00000        | 00000             | 000                    | 000000              | 00                    | 000         |
| Introduction | Generative models | Low density separation | Graph based methods | Unsupervised learning | Conclusions |

## Are unlabeled data useful ?



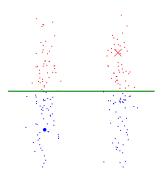
| Introduction<br>00000 | Generative models | Low density separation | Graph based methods<br>000000 | Unsupervised learning<br>00 | Conclusions<br>000 |
|-----------------------|-------------------|------------------------|-------------------------------|-----------------------------|--------------------|
| Are un                | labeled da        | ta useful ?            |                               |                             |                    |



Yes !

| A | مام امما ما ما    | ta ucoful 2            |                       |                    |  |
|---|-------------------|------------------------|-----------------------|--------------------|--|
|   | Generative models | Low density separation | Onsupervised learning | Conclusions<br>000 |  |





Well, not sure.

|         | Generative models | Low density separation | Graph based methods<br>000000 | Unsupervised learning | Conclusions<br>000 |
|---------|-------------------|------------------------|-------------------------------|-----------------------|--------------------|
| The clu | uster assur       | mption                 |                               |                       |                    |

Need for assumption

#### Standard supervised assumption

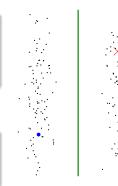
Two points which are near are likely to be of the same label.

#### Cluster assumption

Two points which are in the same cluster (i.e. which are linked by a high density path) are likely to be of the same label.

Equivalently,

Low density separation assumption The decision boundary should lie in a low density region.



| Introduction<br>000000 | Generative models      | Low density separation |  | Unsupervised learning<br>00 | Conclusions<br>000 |  |  |  |  |  |
|------------------------|------------------------|------------------------|--|-----------------------------|--------------------|--|--|--|--|--|
| The cl                 | The cluster assumption |                        |  |                             |                    |  |  |  |  |  |

- This assumption seems sensible for a lot of real world datasets.
- It is used in nearly all SSL algorithms, but most of the time implicitly.
- No equivalent formulation for regression.
   It seems that SSL is not very useful for regression.



A core fundamental question that an SSL algorithm should tackle is

What should I do if I knew exactly the marginal distribution  $P(\mathbf{x})$ ?

Semi-supervised algorithms should be seen as a special case of this limiting case.

Unfortunately, lack of research in this direction. Probably due to historical reasons: for supervised learning, when  $P(\mathbf{x}, y)$  is known, classification is trivial.



A core fundamental question that an SSL algorithm should tackle is

What should I do if I knew exactly the marginal distribution  $P(\mathbf{x})$ ?

Semi-supervised algorithms should be seen as a special case of this limiting case.

Unfortunately, lack of research in this direction. Probably due to historical reasons: for supervised learning, when  $P(\mathbf{x}, y)$  is known, classification is trivial.



#### Generative learning

- For each y, learn the class conditional density P(x|y, θ) (and also the class prior P(y|θ)).
- For a test point **x**, compute  $P(y|\mathbf{x}, \theta) \propto P(\mathbf{x}|y, \theta)P(y|\theta)$ . [Bayes rule]

#### Discriminative learning

Learn directly  $P(y|\mathbf{x})$  (or a decision function).

- Generative learning was popular in the 70s.
- Main advantage of discriminative learning: it avoids the difficult step of modeling class conditional densities.
- Nowadays, discriminative classifiers are usually preferred.



#### Generative learning

- For each y, learn the class conditional density P(x|y, θ) (and also the class prior P(y|θ)).
- For a test point **x**, compute  $P(y|\mathbf{x}, \theta) \propto P(\mathbf{x}|y, \theta)P(y|\theta)$ . [Bayes rule]

### Discriminative learning

Learn directly  $P(y|\mathbf{x})$  (or a decision function).

- Generative learning was popular in the 70s.
- Main advantage of discriminative learning: it avoids the difficult step of modeling class conditional densities.
- Nowadays, discriminative classifiers are usually preferred.

| Introduction<br>000000 | Generative models | Low density separation | Graph based methods | Unsupervised learning<br>00 | Conclusions<br>000 |
|------------------------|-------------------|------------------------|---------------------|-----------------------------|--------------------|
| Outline                | 2                 |                        |                     |                             |                    |

1 Introduction

- 2 Generative models
- 3 Low density separation
- Graph based methods
- 5 Unsupervised learning

### 6 Conclusions



It is straightforward to use unlabeled data in a generative model:

Find the model parameters  $\boldsymbol{\theta}$  maximizing the log-likelihood of the labeled and unlabeled data,

$$\sum_{i} \log(\underbrace{P(\mathbf{x}_{i}|y_{i},\theta)P(y_{i}|\theta)}_{P(\mathbf{x}_{i},y_{i}|\theta)} + \sum_{i} \log(\underbrace{\sum_{y} P(\mathbf{x}_{i}'|y,\theta)P(y|\theta)}_{P(\mathbf{x}_{i}'|\theta)}).$$

Simplest example: each class has a Gaussian distribution.

This is a missing value problem.

→ Can be learned with the Expectation-Maximization (EM) algorithm.



It is straightforward to use unlabeled data in a generative model:

Find the model parameters  $\boldsymbol{\theta}$  maximizing the log-likelihood of the labeled and unlabeled data,

$$\sum_{i} \log(\underbrace{P(\mathbf{x}_{i}|y_{i},\theta)P(y_{i}|\theta)}_{P(\mathbf{x}_{i},y_{i}|\theta)} + \sum_{i} \log(\underbrace{\sum_{\mathbf{y}} P(\mathbf{x}_{i}'|\mathbf{y},\theta)P(\mathbf{y}|\theta)}_{P(\mathbf{x}_{i}'|\theta)}).$$

Simplest example: each class has a Gaussian distribution.

This is a missing value problem.

 $\longrightarrow$  Can be learned with the Expectation-Maximization (EM) algorithm.



EM is used to maximize the likelihood of model with hidden variables.

## EM algorithm for SSL

- E-step: compute  $q_i(y) = P(y|\mathbf{x}'_i, \theta)$
- M-step: maximize over  $\theta$ ,

$$\sum_{i} \log(P(\mathbf{x}_{i}|y_{i},\theta)P(y_{i}|\theta)) + \sum_{i} \sum_{y} q_{i}(y) \log(P(\mathbf{x}_{i}'|y,\theta)P(y|\theta))$$

Nice interpretation and relation to self-learning:

- E-step: estimate the labels according to the current decision function.
- M-step: estimate the decision function with the current labels.

| Introduction | Generative models | Low density separation | Graph based methods | Unsupervised learning | Conclusions |
|--------------|-------------------|------------------------|---------------------|-----------------------|-------------|
| 000000       | 00●00             |                        | 000000              | 00                    | 000         |
| Toy ex       | ample             |                        |                     |                       |             |

Class conditional density is Gaussian.

Demo EM



Experiments on text classification

Nigam et al, Text Classification from Labeled and Unlabeled Documents Using EM, Machine Learning, 2000

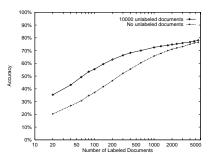
- Bag of words representation
- Multinomial distribution

$$P(\mathbf{x}|, y, \theta) = \prod_{words} \theta_{w|y}^{x_w}$$

 $\longrightarrow$  Naive Bayes classifier

- Several components per class
- 20 Newsgroups dataset

Intuition: SSL detects words co-occurrence.



Introduction Generative models Low density separation Graph based methods Unsupervised learning Conclusions

## Analysis of generative methods

## Advantages

- Easy to use
- Unlabeled data are very useful.

 $\longrightarrow$  In the limit, they determine the decision boundary (labeled points are only useful for the direction).

## Drawback

Usually, the model is misspecified.  $\longrightarrow$  There is no  $\theta$  such that  $P(\mathbf{x}) \equiv P(\mathbf{x}|\theta)$ . Unlabeled data can be misleading since Maximum Likelihood tries to model  $P(\mathbf{x})$  rather than  $P(y|\mathbf{x})$ .

Note: the cluster assumption is not explicitly stated, but implied by standard models such as mixture of Gaussians.

| Introduction<br>000000 | Generative models | Low density separation | Graph based methods<br>000000 | Unsupervised learning<br>00 | Conclusions<br>000 |
|------------------------|-------------------|------------------------|-------------------------------|-----------------------------|--------------------|
| Outline                | 2                 |                        |                               |                             |                    |



- 2 Generative models
- 3 Low density separation
- Graph based methods
- 5 Unsupervised learning

#### 6 Conclusions

|        | Generative models | Low density separation<br>●00 | Graph based methods<br>000000 | Unsupervised learning<br>00 | Conclusions<br>000 |
|--------|-------------------|-------------------------------|-------------------------------|-----------------------------|--------------------|
| Low de | ensity sepa       | ration                        |                               |                             |                    |

Find a decision boundary which lies in low density regions (do not cut clusters).

For instance, find f with no training error and which minimizes

 $\max_{\mathbf{x}, f(\mathbf{x})=0} P(\mathbf{x})$ 

P is unknown in practice, but a kernel density estimate can be used.  $\longrightarrow$  Push the decision boundary away from the unlabeled points.

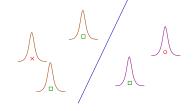


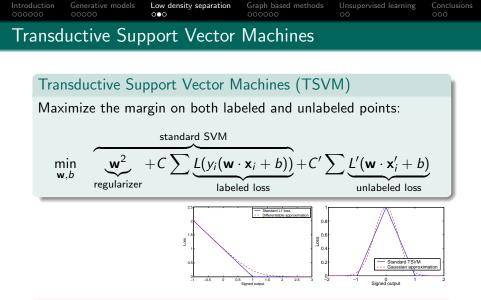
Find a decision boundary which lies in low density regions (do not cut clusters).

For instance, find f with no training error and which minimizes

 $\max_{\mathbf{x}, f(\mathbf{x})=0} P(\mathbf{x})$ 

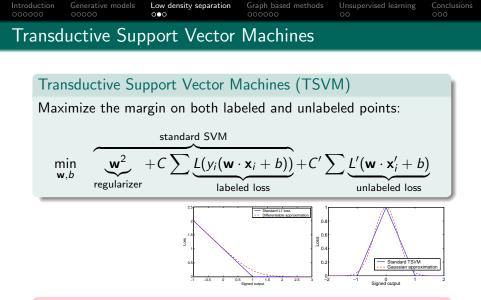
P is unknown in practice, but a kernel density estimate can be used.  $\longrightarrow$  Push the decision boundary away from the unlabeled points.





#### Main difficulty

Non convex optimization problem  $\longrightarrow$  local minima



#### Main difficulty

Non convex optimization problem  $\longrightarrow$  local minima

| Introduction<br>000000 | Generative models | Low density separation | Graph based methods | Unsupervised learning<br>00 | Conclusions |
|------------------------|-------------------|------------------------|---------------------|-----------------------------|-------------|
| Experir                | ments             |                        |                     |                             |             |

## • Toy problem, varying C'

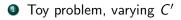
### Demo TSVM

#### ② Text classification

- 10 most frequent categories of the Reuters dataset.
- 17 labeled documents, 3299 unlabeled ones.
- The average precsion/recall breakeven point went from 48.4% (SVM) to 60.8% (TSVM).

T. Joachims, Transductive Inference for Text Classification using Support Vector Machines, ICML 1999

| Introduction<br>000000 | Generative models | Low density separation<br>00● | Graph based methods | Unsupervised learning<br>00 | Conclusions<br>000 |
|------------------------|-------------------|-------------------------------|---------------------|-----------------------------|--------------------|
| Experi                 | ments             |                               |                     |                             |                    |



#### Demo TSVM

② Text classification

- 10 most frequent categories of the Reuters dataset.
- 17 labeled documents, 3299 unlabeled ones.
- The average precsion/recall breakeven point went from 48.4% (SVM) to 60.8% (TSVM).

T. Joachims, Transductive Inference for Text Classification using Support Vector Machines, ICML 1999

| Introduction<br>000000 | Generative models | Low density separation | Graph based methods | Unsupervised learning<br>00 | Conclusions<br>000 |
|------------------------|-------------------|------------------------|---------------------|-----------------------------|--------------------|
| Outline                | 9                 |                        |                     |                             |                    |

- 1 Introduction
- 2 Generative models
- 3 Low density separation
- Graph based methods
- 5 Unsupervised learning

### 6 Conclusions

| Introduction<br>000000 | Generative models | Low density separation | Graph based methods<br>●00000 | Unsupervised learning<br>00 | Conclusions |
|------------------------|-------------------|------------------------|-------------------------------|-----------------------------|-------------|
| Measu                  | re based re       | egularization          |                               |                             |             |

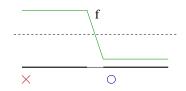
Finding a low density separation is a difficult problem.

 $\longrightarrow$  Another approach to enforce the cluster assumption is to consider regularizers such as

$$\int ||\nabla f(\mathbf{x})|| P(\mathbf{x}) d\mathbf{x}$$

By doing so, the function

- does not change a lot in high density regions,
- is allowed to vary in low density regions.

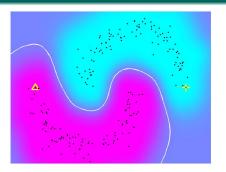


Introduction Generative models Low density separation Graph based methods Unsupervised learning Conclusions

## Measure based regularization

Toy problem: "two moons"

- RBF network, centers = unlabeled points
- Kernel density estimate



Smooth in high density  $\Rightarrow$  decision boundary does not cut clusters.

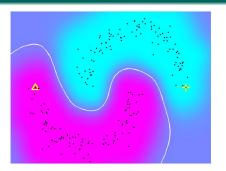
 Introduction
 Generative models
 Low density separation
 Graph based methods
 Unsupervised learning
 Conclusions

 00000
 0000
 0000
 00000
 00000
 00000
 00000

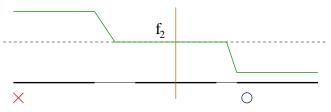
## Measure based regularization

Toy problem: "two moons"

- RBF network, centers = unlabeled points
- Kernel density estimate



Smooth in high density  $\Rightarrow$  decision boundary does not cut clusters.



|       | Generative models | Low density separation | Graph based methods<br>00●000 | Unsupervised learning<br>00 | Conclusions<br>000 |
|-------|-------------------|------------------------|-------------------------------|-----------------------------|--------------------|
| Graph | based app         | roaches                |                               |                             |                    |

## Graph regularization

Construct a graph whose vertices are the labeled and unlabeled points, typically a (weighted) nearest neighbor graph and minimize

 $\sum_{i,j} W_{ij}(f(\mathbf{x}_i) - f(\mathbf{x}_j))^2 \qquad [W \text{ is the adjacency matrix}]$ 

- Discretized version of the measure based regularization
- When f takes only binary values  $\longrightarrow$  "cut" of the graph.
- A lot of related algorithms based on different motivations
  - Regularization [Belkin '02, Smola '03]
  - Clustering
    - Graph min-cut [Blum '01, Joachims '03, Bach '03]
    - Spectral Clustering [Ng '01, Chapelle '02]
  - Diffusion [Szummer '01, Zhu '02, Kondor '02, Zhou '03]

|       | Generative models | Low density separation | Graph based methods | Unsupervised learning<br>00 | Conclusions<br>000 |
|-------|-------------------|------------------------|---------------------|-----------------------------|--------------------|
| Graph | based app         | roaches                |                     |                             |                    |

## Graph regularization

Construct a graph whose vertices are the labeled and unlabeled points, typically a (weighted) nearest neighbor graph and minimize

 $\sum_{i,j} W_{ij}(f(\mathbf{x}_i) - f(\mathbf{x}_j))^2 \qquad [W \text{ is the adjacency matrix}]$ 

- Discretized version of the measure based regularization
- When f takes only binary values  $\longrightarrow$  "cut" of the graph.
- A lot of related algorithms based on different motivations
  - Regularization [Belkin '02, Smola '03]
  - Clustering
    - Graph min-cut [Blum '01, Joachims '03, Bach '03]
    - Spectral Clustering [Ng '01, Chapelle '02]
  - Diffusion [Szummer '01, Zhu '02, Kondor '02, Zhou '03]

| 000000 | 00000     |         | 00 | 000 |
|--------|-----------|---------|----|-----|
| Graph  | based app | roaches |    |     |

Works very well if the data lie on a low dimensional manifold.

Main difficulties

- Construction of the graph
- Gives a transductive solution (defined on the unlabeled points) and not an inductive one (defined everywhere).

|  |                        | <br>00 | 000 |
|--|------------------------|--------|-----|
|  | Low density separation |        |     |

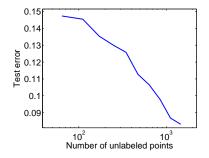
# Handwritten digit recognition

- Handwritten digits (USPS)
- 256 dimensions
- Class 0 to 4 against 5 to 9
- 2007 samples



Low dimensional manifold (translations, rotations, ...)

50 labeled points, varying the number of unlabeled points.

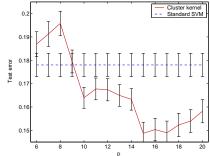


| Introduction<br>000000 | Generative models | Low density separation | Graph based methods | Unsupervised learning<br>00 | Conclusions<br>000 |
|------------------------|-------------------|------------------------|---------------------|-----------------------------|--------------------|
| Handw                  | ritten digi       | t recognition          | I                   |                             |                    |

O. Chapelle et al., Cluster kernels for semi-supervised learning, NIPS 2002

Kernel function for semi-supervised learning based on spectral clustering.

- Hyperparameter p ≈ corresponding to the number of clusters.
- Local minimum for *p* = 10, i.e. number of digits.



| Introduction<br>000000 | Generative models | Low density separation | Graph based methods<br>000000 | Unsupervised learning | Conclusions<br>000 |
|------------------------|-------------------|------------------------|-------------------------------|-----------------------|--------------------|
| Outline                | 2                 |                        |                               |                       |                    |

- 1 Introduction
- 2 Generative models
- 3 Low density separation
- Graph based methods
- 5 Unsupervised learning
- 6 Conclusions

|  | Low density separation | . 0 |  |
|--|------------------------|-----|--|

## Unsupervised learning as a first step

### Two steps procedure

- Unsupervised learning (ignoring the labels)
  - $\longrightarrow$  New distance / representation.
- Supervised learning with the new distance / representation (ignoring the unlabeled points).
  - Advantage: simple procedure using existing algorithms.
  - Drawback: could be suboptimal.

A lot of possibilities: (spectral) clustering, change of distances, dimensionality reduction (PCA, LSI or non-linear).

| 11           |                   | uning on office        |                     |                       |             |
|--------------|-------------------|------------------------|---------------------|-----------------------|-------------|
|              |                   |                        |                     | •0                    |             |
| Introduction | Generative models | Low density separation | Graph based methods | Unsupervised learning | Conclusions |

# Unsupervised learning as a first step

### Two steps procedure

- Unsupervised learning (ignoring the labels)
  - $\longrightarrow$  New distance / representation.
- Supervised learning with the new distance / representation (ignoring the unlabeled points).
  - Advantage: simple procedure using existing algorithms.
  - Drawback: could be suboptimal.

A lot of possibilities: (spectral) clustering, change of distances, dimensionality reduction (PCA, LSI or non-linear).

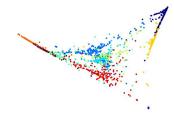


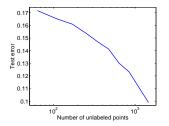
# Locally Linear Embedding (LLE)

Roweis and Saul, Nonlinear dimensionality reduction by locally linear embedding, Science 2000

 $\longrightarrow$  Popular methods for non-linear dimensionality reduction.

- 2D embedding of the 2007 digits of the USPS test set.
- Constructed with a 5 nearest neighbors graph.





- Embedding in 15 dimensions
- Classification by a linear SVM in the embedded space

| Introduction<br>000000 | Generative models | Low density separation | Graph based methods<br>000000 | Unsupervised learning<br>00 | Conclusions |
|------------------------|-------------------|------------------------|-------------------------------|-----------------------------|-------------|
| Outline                | 2                 |                        |                               |                             |             |

1 Introduction

- 2 Generative models
- 3 Low density separation
- Graph based methods
- **5** Unsupervised learning





- If the structure contained in the data is irrelevant for the classification problem (i.e. no cluster assumption)

   — Perform standard supervised learning.
- If you have a good generative model of your data → Use it !
- - $\longrightarrow$  Use low density separation techniques.
- If the data has a manifold structure
   Use a graph based approach.

In all cases, unsupervised learning as a first step is baseline technique that can be very effective.

| Introduction<br>000000 | Generative models | Low density separation | Graph based methods<br>000000 | Unsupervised learning<br>00 | Conclusions<br>0●0 |
|------------------------|-------------------|------------------------|-------------------------------|-----------------------------|--------------------|
| Benchr                 | mark              |                        |                               |                             |                    |

#### A lot of variability across methods and datasets

|                | g241c | g241d | Digit1 | USPS  | COIL  | BCI   | Text  |
|----------------|-------|-------|--------|-------|-------|-------|-------|
| 1-NN           | 43.93 | 42.45 | 3.89   | 5.81  | 17.35 | 48.67 | 30.11 |
| SVM            | 23.11 | 24.64 | 5.53   | 9.75  | 22.93 | 34.31 | 26.45 |
| MVU + 1-NN     | 43.01 | 38.20 | 2.83   | 6.50  | 28.71 | 47.89 | 32.83 |
| LEM + 1-NN     | 40.28 | 37.49 | 6.12   | 7.64  | 23.27 | 44.83 | 30.77 |
| QC + CMN       | 22.05 | 28.20 | 3.15   | 6.36  | 10.03 | 46.22 | 25.71 |
| Discrete Reg.  | 43.65 | 41.65 | 2.77   | 4.68  | 9.61  | 47.67 | 24.00 |
| TSVM           | 18.46 | 22.42 | 6.15   | 9.77  | 25.80 | 33.25 | 24.52 |
| SGT            | 17.41 | 9.11  | 2.61   | 6.80  | -     | 45.03 | 23.09 |
| Cluster-Kernel | 13.49 | 4.95  | 3.79   | 9.68  | 21.99 | 35.17 | 24.38 |
| Entropy-Reg.   | 20.97 | 25.36 | 7.28   | 12.21 | 29.48 | 28.89 | 24.86 |
| Data-Dep. Reg. | 20.31 | 32.82 | 2.44   | 5.10  | 11.46 | 47.47 | -     |
| LDS            | 18.04 | 23.74 | 3.46   | 4.96  | 13.72 | 43.97 | 23.15 |
| Laplacian RLS  | 24.36 | 26.46 | 2.92   | 4.68  | 11.92 | 31.36 | 23.57 |
| CHM (normed)   | 24.82 | 25.67 | 3.79   | 7.65  | -     | 36.03 | -     |

| Introduction<br>000000 | Generative models | Low density separation | Graph based methods<br>000000 | Unsupervised learning<br>00 | Conclusions |
|------------------------|-------------------|------------------------|-------------------------------|-----------------------------|-------------|
| Conclu                 | sion              |                        |                               |                             |             |

- No "black box" solution: a careful analysis of the problem is needed to understand how the unlabeled can help.
- One of the main challenge is to design large scale algorithms.